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Summary 
 
Respect is an effort to allow a problem solver to accept advice and exhibit 
learning.  It is based on a high-level description of a problem solver that can be 
examined and manipulated by the problem-solver itself.  Experiments are being 
conducted in such problem-solving arenas as meeting scheduling, type checking, 
and logistics planning.   
 
By specializing a general-purpose problem solver to a declarative problem 
specification, we obtain a procedure for that particular problem domain, which is 
not necessarily efficient.  Because the initial problem solver is high-level, the 
information is explicitly available as to which operations can be reordered; 
reordering can lead to radical changes in the search space.  In the meeting 
scheduling domain, this reordering can ensure that we schedule the scarce 
resources first (busy people, popular facilities).    
We have seen examples in which failed solutions can be examined automatically 
to suggest relaxation of constraints--a kind of problem reformulation.  For 
example, if a scheduling problem is unsolvable, an examination of the search 
space can suggest that a trip be extended an additional day, or that some 
participants work an extra hour.  The envisioned system accepts advice as to how 
to examine the search space. 
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Introduction 
 

Current problem-solving systems, however competent they may be, are rigid in that they 
cannot improve their performance through experience and they cannot accept advice 
from a knowledgeable consultant.   One reason for this is that a problem-solving system 
does not have access to the design decisions of its implementer, and hence is not in a 
position to alter them.  In the Respect project, we envision a problem solver that has 
access and control over its entire design history, and hence is in a position to alter itself as 
a result of advice or experience.  On selected examples, we have shown how the 
derivation structure identifies choice points at which advice is called for, and shows how 
the appropriate advice can effect drastic improvements in the search space and the quality 
of the final product.  Creating and retaining a record of the derivation structure also 
makes us better able to adapt to changing task descriptions and environments—we can 
develop versions of the problem solver that are specialized to the particular task at hand. 
 
 
Advice might be abstract and domain-independent (work on shorter goals first) or 
domain-specific (schedule busier people first; assign most constrained types first).  
Advice can express assistance in problem solving (delete goals that are subsumed by 
others.) or preferences between solutions (prefer to have meetings end early; prefer 

shorter business trips; prefer to use less 
fuel.) 
 
We begin (see Figure 1) with a 
specification of a problem solver and a 
derivation within Planware of a general-
purpose problem solver that meets that 
specification.   We then apply the 
problem solver to a particular subject 
domain theory.  The result is a problem 
solver specialized to the domain.  There 
is no expectation at this point that this 
problem solver will be efficient.  The 
general problem solver has been 
implemented without any knowledge of 
the intended application.  
 
At each stage of the derivation, the 
system or implementer has made 
choices. Having access to those choices 
gives us the possibility of changing 
them.  In general, a choice corresponds 
to choosing an element from a set.  We  
may choose an implementation for a  

Figure 1: The Derivation Structure 
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data structure from a variety of possible implementations; we may choose the place to 
insert a task in an agenda of tasks; we may choose a subformula from the set of 
subformulas of a given formula.   Each choice represents a decision that can be altered, 
giving possibly radical alterations of the search space.    The choice points indicate places 
at which a system can ask for advice from a knowledgeable consultant. 
 
There is a virtue in having access to the many levels in the derivation of the problem 
solver.  For instance, while the highest level may be declarative, advice about what to do 
first is often at a procedural level, in which actions are taken.  Domain-independent 
advice will be at an abstract level, while domain-specific advice will necessarily be at a 
concrete level. 
 
While there are many possible problem solvers, in our experiments we have looked at 
systems for using logical inference as a problem solver.     The methods are entirely 
general.  Indeed, the design of Respect allows us to alter that choice and examine other 
problem-solving structures when they are more appropriate for a particular subject 
domain.  Our intention is to incorporate these ideas into a version of the software-
development environment Specware [Kestrel]. 
 
The specifications on the left in Figure 1 are declarative—they indicate what is to be 
done without indicating how.  The other specifications are procedural—they indicate 
what actions are to be performed, but do not say why.  The entire derivation structure 
expresses both the why and the how. 
 
The higher-level specifications are more abstract, while the lower-level ones are more 
concrete.  While the top specification just talks about what it means to solve a problem, 
the second level talks about theorem proving, the third level to resolution theorem 
proving, and the lowest level is specific to a particular application, meeting scheduling.  
 
While not all the links in the structure have been implemented, we have done enough to 
suggest the value of exploring this approach further.  We have shown that choice points 
in the structure indicate where advice can be accepted and that advice can have a 
dramatic difference in both the quality of the solution and the time spent in finding it.  
We will focus on particular aspects of the derivation structure. 
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Detailed Discussion of the Derivation Structure: 
Inference 
In this section we spell out some of the details of some of the specifications involved in 
the derivation of a planning system. 
 
In Appendix 1: Generic Declarative Refutation Theorem Prover we see the specification 
for an inference system that is independent of the particular inference rules to be applied; 
to implement this system, we must select an inference rule.  Hence advice such as “use 
resolution” or “use rewriting” would be meaningful.  On the other hand, because it is 
declarative, it would not be meaning to give the advice “treat short sentences before long 
sentences” at this level—that is procedural advice. 
 
In Appendix 2: Declarative Resolution Theorem Prover, the inference rule has been 
specialized to binary resolution.  For these experiments this was done by hand, but 
ultimately it would be carried out within Planware.  Also, while the present specification 
is for propositional logic, it could be converted to first-order logic by the introduction of 
substitution arguments and invocation of unification.   
 
While the previous theorem prover was declarative, the next (Appendix 3: Procedural 
Resolution Theorem Prover) is an actual MetaSlang procedure.  At this level, we can 
express strategic advice, such as stating which sentences to apply the resolution rule to 
first.  Because this level is still domain-independent, we cannot yet specify domain-
specific advice.   In the next section, we see how knowing the subject domain allows us 
to express such advice. 
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Meeting-Scheduling Theories 
 
To experiment with the impact of advice and learning on particular subject domains, we 
have developed declarative and procedural versions of particular domain theories, 
including meeting scheduling and type inference.  While ultimately we will develop a 
single theory that will allow us to specify a variety of scheduling problems, for the 
purpose of these experiments we have developed theories to specify particular problems.  
While ultimately we will use the theorem prover derived in the previous section, to start 
off the bootstrap process we have used the theorem prover SNARK that is built into 
Specware.  Scheduling has been one of the more successful applications of the Specware 
family of problem solvers [Smith et al.] 
 
 
In Appendix 4: Declarative Specification of a Simple Meeting-Scheduling Problem, we 
specify a simple meeting-scheduling problem.  This was an early experiment in different 
representations of the domain.  In this problem, there are three participants, Art, Bob, and 
Carol, who are busy at three times, A, B, and C, respectively.  While in later problems we 
deal with real time intervals, at this stage we regard times as abstract.   To say that Art is 
free at Time B, we say 
 
   Art(TimeB), 
 
and so forth.   
 
To schedule a meeting between  Bob and Carol, we say 
 
   ex(time1 : Time) 
    Bob(time1) & Carol(time1). 
     
In other words, we prove the existence of a time time1 at which both Bob and Carol are 
free.  During the proof, the variable time1 will be replaced by a concrete time TimeA, 
which represents the only time at which Bob and Carol are free.  This solution is 
extracted from the proof by the theorem prover.   Solution was essentially instantaneous.  
 
While declarative specifications resemble logic programs superficially, in fact they are 
quite different.  A logic program represents a procedure in logical notation.  A declarative 
specification is a simple statement of facts with no order of execution or other procedural 
information implied.    
 
In Appendix 5: Procedural Meeting-Scheduling Theory,  we give a MetaSlang program 
that represents a meeting-scheduling procedure.  Eventually this would be developed by 
specializing the procedural version of a problem solver, such as the binary resolution 
theorem prover, to a declarative statement of the meeting-scheduling theory. 
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In Appendix 6: Two-Meeting Scheduling Problem, we deal with a problem in which two 
meetings had to be scheduled and one of the participants was more busy than the other 
two.  The intention was to show that the advice to schedule the busiest participant first 
would lead to more efficient scheduling.  However, the solution of the problem, with or 
without advice, was also instantaneous. 
 
In Appendix 7: Scheduling with Space, we introduce space as well as time—to schedule a 
meeting, one must find a room as well as a time.  This requires a change in 
representation.  We introduce two predicate symbols, FreePerson and FreeRoom.  
We deal with two distinct times, Morning and Afternoon, and two rooms, 
LightRoom and DarkRoom.  To state that Carol is free in the afternoon, we write 
 
   FreePerson(Carol, Afternoon). 
 
To state that the light room is free in the morning, we say 
 
  FreeRoom(LightRoom, Morning) . 
 
To state a problem of scheduling two meetings, we say 
 
   ex(time1 : Time, time2 : Time, room1 : Room, room2 : Room,  
      schedule : Time * Room * Time * Room) 
    FreePerson(Art, time1) & FreePerson(Bob, time1) &  
    FreeRoom(room1, time1) & 
    FreePerson(Bob, time2) & FreePerson(Carol, time2) & 
    FreeRoom(room2, time2) & 
    ~(time1 = time2) &  
    schedule = (time1, room1, time2, room2). 
 
In other words, we want to find a time time1 at which Art, Bob, and a room room1 
are all free, and another time time2 at which Bob, Carol and a room room2 are all 
free; if we succeed, a successful schedule is to have the first meeting be at  time1 in  
room1 and the second meeting be at time2 in  room2.    
 
All of the above problems were too simple to be useful in experimenting with the effects 
of advice.   In the next problem (Appendix 8: Advice about Constraint Ordering), we 
expanded the number of participants and rooms, in an attempt to find a problem that 
would benefit from advice.   We posited that there are nine participants, eight times, and 
eleven rooms.  While most people and rooms are free at all times, Bob and the dark room 
are only free at Time 5.  We are required simply to find a time and room at which all nine 
are available.  
   
Because Bob is the busiest person and the dark room is the busiest room, our expectation 
was that the theorem prover would find a solution more quickly if it was given the advice 
to schedule these most constrained resources first.  We say this by specifying, in effect 
that Bob » Art, that DarkRoom » LightRoom, etc.  We experimented with giving this 
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advice, giving a perversely bad ordering in which the most constrained resources were 
scheduled last, and using no ordering strategy at all.   
 
Somewhat to our surprise, the theorem prover behaved equally well with the good advice 
and with the bad advice, and slightly worse without an ordering strategy.   
 
The explanation was that giving any ordering eliminates redundancy, because it doesn’t 
attempt to handle the same set of constraints in different orders.   General-purpose 
theorem-proving strategies, which are built into the theorem prover, made the domain-
specific advice we used redundant.   The most important of these strategies here is to 
favor shorter clauses over longer ones.   In particular, unit clauses, such as the 
descriptions of the free times of people and rooms, are handled immediately.  For the 
meeting-scheduling problem, the clause in which Bob is scheduled to meet at Time 5 is 
shorter than the clauses in which Bob is scheduled to meet at other times, since the 
constraint that he be free at Time 5 is handled immediately by resolution with a unit 
clause. 
 
While in the current implementation the advice to do short clauses first is built in, when 
we derive a theorem prover from an abstract specification we expect to be able to accept 
advice that suggests handling shorter clauses first.   
 
In our previous examples, ordering advice told the problem solver what to attempt first.  
But there is another kind of ordering advice, which expresses which kinds of solutions 
are to be preferred.  This might better be regarded as part of the specification, but it does 
not constitute a hard restriction on the solution; rather, it states that if two solutions are 
possible, one of them might be preferred to the other.  For this reason, such preferences 
are sometimes known as soft constraints.   
 
We have experimented with a domain-independent way of dealing with such problems.   
We first ignore the preference advice and find a single solution to the problem.  We then 
search for additional solution, adding to the specification the condition that the new 
solution be “better” than the original, where “better” means preferable in the sense 
expressed by the advice.  If we succeed, again, we seek a third solution that is “better” 
than the second, and so on until either the set of solutions is exhausted or we exceed some 
preset time limit.   
 
 
In Appendix 9: Preference Advice, we consider a problem in which four different 
meetings are to be scheduled, some but not all of which can be concurrent.  While it is 
perfectly permissible to have them scattered throughout the day, we state a preference 
that all the meetings should be over as early as possible.  With this preference advice, and 
the above-mentioned method of invoking a theorem prover repeatedly to seek better and 
better solutions, we find a solution in which the meetings are held as early as possible, 
and with the greatest possible overlap. 
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While in the previous problem we dealt with advice about a preference in time (finishing 
earlier is better), in the next problem (in Appendix 10: Opportunistic Meeting 
Scheduling), we considered advice about a preference in distance.    
 
We suppose that a meeting must be scheduled between Alice and Bob during the first ten 
days of April.  (This is the first problem in which we deal with concrete time intervals.)  
Alice lives in San Francisco and Bob lives in New York.  One solution is to have Alice 
make a special trip to New York, Bob make a special trip to San Francisco, or both of 
them make a special trip to a third location.  However, we are told that Alice already has 
a trip scheduled to Minneapolis, Minnesota, April 3–7, and Bob has a trip scheduled to 
Saint Paul, Minnesota, April 5–9.  These are overlapping time intervals; the theorem 
prover used a built-in temporal reasoning procedure to detect this.  Also, Minneapolis and 
Saint Paul are within six miles of each other; to detect this, the theorem prover invokes an 
external gazetteer (for finding their latitudes and longitudes) and an geographical 
computation procedure (for finding the distance between those latitude/longitude pairs).   
Consequently it proposes a better solution in which they meet in Minnesota during April 
5–7.   
 
Whereas learning is sometimes associated with inductive inference or statistics, in 
Appendix 11: Learning in Meeting Scheduling,  we treat learning as a way of responding 
to a failed solution attempt to exhibit better performance in the future, in this case by 
negotiating a restatement of the problem.  
 
We start with an impossible problem, in which three distinct meetings must be scheduled 
in two time-slots.  Art, Bob, and Carol are free at Times 1 and 2 but busy at Time 3.  The 
theorem prover fails to find a solution. 
 
However, if we examine the search space, we find that every branch ends with a two-
literal clause that requests that two of the participants be free at Time 3, e.g, 
 
   FreePerson(Art, Time3) & FreePerson(Bob, Time3), 
or 
   FreePerson(Bob, Time3) & FreePerson(Carol, Time3). 
 
Such conditions can be detected automatically via the abduction facility of the theorem 
prover.  This suggests that we relax the constraints of the problem so that two of the 
participants are free at a third time. 
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Type-Inference Theory 
 
While most of our experiments have been conducted in the domain of meeting 
scheduling, it is intended that the techniques we explore be valuable across many 
domains.  For example, we have found then to be useful for type inference, the consistent 
assignment of types to the symbols in an expression (see Appendix 12: Type-Inference 
Theory).  For instance, it is appropriate to offer advice to assign a type to the most 
constrained symbol first.    These results are of special interest because Specware itself 
uses type inference, so any improvements will be immediately applicable. 
 
Now we reproduce the diagram of the Introduction, indicating which appendices, 
including content or advice, correspond to which components of the figure. 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Derivation Structure Revisited 

General Solver 
[declarative] 
(apply rules until goal solved) 

Inference System 
[declarative] 
Appendix 1 
(define deductive closure:  
 “use resolution”) 

Theorem Prover 
[procedural] 
(defines “prove”) 

Resolution Refutation System 
[declarative] 
Appendix 2 
(define binary resolution: 
“represent set as list”) 

Meeting Scheduling Theories 
[declarative] 
several appendices 
(define FreePerson, FreeRoom; 
“schedule Bob before Art”;  
“prefer meetings end early”) 

Resolution Theorem Prover 
[procedural] 
Appendix 3 
(define refute: 
 “do short clauses first”) 

Meeting Scheduler 
[procedural] 
Appendix 5 
(define ScheduleGroupTime; 
 define arbGroup; 
“select busiest person from group”) 
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Related Work 
 
[Weyhrauch] developed a formal metatheory for first-order logic and introduced a 
“reflection principle,” a rule of inference that allowed conclusions about logic derived by 
the metatheory to alter and improve the metatheory itself.  His work was in the setting of 
an interactive theorem prover.   
 
[Meseguer] develops a metalogical framework for describing other logics.  Huet and 
Plotkin collect descriptions of logical frameworks.  In this work, the emphasis is on 
representing logical reasoning, rather than proof search or automated problem solving. 
 
[Boyer] use a reflection principle similar to Weyhrauch’s in their automatic theorem 
prover, so that a theorem about arithmetic expressions proved by the system can 
accelerate the performance of the system itself when applied to arithmetic expressions. 
 
[Apt] develops a theory of problem solvers in which resolution can be viewed as an 
instance of a constraint problem solver. 
 
[Ridge] derives a first-order-logic theorem prover from a soundness and completeness 
proof for a system of first-order logic.  This proof, and the extraction of the theorem 
prover, constitutes a full derivation history for the theorem prover.  The theorem prover 
derived has no function symbols or equality and cannot extract answers from proofs, but 
these are plausible extensions. 
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Discussion 
 
This work is still in its early stages but it suggests that having access to the derivation 
structure of a problem solver can allow us to effect radical improvements in its 
performance.  The choice points in the refinement are natural places to ask advice from a 
consultant.   Since the advice can alter the derivation, it can have a radical effect on the 
performance of the problem solver in the selected subject domain.   Advice can be 
declarative (e.g., preferences over solutions) or procedural (e.g., do unit clauses first); 
abstract (do short clauses first) or domain-specific (schedule the most constrained people 
or resources first).   Therefore it is crucial to have access to all levels of the derivation 
structure. 
 
There is also the possibility of improving the problem solving structure itself by 
reasoning in problem-solving theories.  Thus reasoning about type inference can result in 
improvements in the type inference we use in reasoning.  Reasoning about unification or 
deduction can improve the unification and deduction mechanism. If we derive a 
unification algorithm for a theory that is used in our derivation process, we can use that 
algorithm to expedite future derivations. 
 
Examination of the search space of sample problems can lead to alterations in the 
problem solver or even renegotiation of the specifications for problems and the relaxation 
of constraints.  The ability to rerun the problem solver and revise the specification 
provides a novel way of dealing with user advice on preferences.  These results apply 
across a variety of domains, including meeting scheduling, type inference, and logistics 
planning. 
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Appendix 1: Generic Declarative Refutation Theorem 
Prover 
 
Here is the specification for a generic refutation theorem prover: 
 
deduction_spec = spec 
 
(* comment: 
This is a declarative spec for a generic refutation theorem prover; 
it computes the deductive closure of a set of sentences with respect 
to a set of inference rules.  For a refutation procedure we check 
that the false sentence occurs in the closure. 
   end comment *) 
 
sort Sentence 
 
sort SentenceSet = {s : Sentence | true} 
 
op inSentenceSet : Sentence * SentenceSet -> Boolean 
 
op subSentenceSet : SentenceSet * SentenceSet -> Boolean 
 
sort Rule 
 
sort RuleSet = {r : Rule | true} 
 
op inRuleSet : Rule * RuleSet -> Boolean 
 
op subRuleSet : RuleSet * RuleSet -> Boolean 
 
op  apply_rs : Rule * Sentence -> SentenceSet 
 
op apply_Rs : RuleSet * Sentence -> SentenceSet 
 
op apply_rS : Rule * SentenceSet -> SentenceSet 
 
op apply_RS : RuleSet * SentenceSet -> SentenceSet 
 
axiom definition_of_apply_RS is 
 fa(R : RuleSet, S : SentenceSet, s : Sentence) 
  (inSentenceSet(s, apply_RS(R, S)) <=> 
   (ex(r : Rule) 
    (inRuleSet(r, R) & 
     inSentenceSet(s, apply_rS(r, S)))))   
 
axiom monotonicity_of_RuleSet is 
  fa(R1 : RuleSet, R2 : RuleSet, S : SentenceSet) 
    subRuleSet(R1, R2) => 
    subSentenceSet(apply_RS(R1, S), apply_RS(R2, S)) 
 
axiom monotonicity_of_SentenceSet is 
  fa(R : RuleSet, S1 : SentenceSet, S2 : SentenceSet) 
    subSentenceSet(S1, S2) => 
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    subSentenceSet(apply_RS(R, S1), apply_RS(R, S2)) 
 
op neg : Sentence -> Sentence 
 
op implies : Sentence * Sentence -> Boolean 
 
op conjunction : SentenceSet -> SentenceSet 
 
op impliesSet : SentenceSet * SentenceSet -> Boolean 
 
axiom definition_of_impliesSet is 
  fa(S1 : SentenceSet, S2 : SentenceSet) 
   (impliesSet(S1, S2) <=> 
    (fa(s2 : Sentence) 
      (inSentenceSet(s2, S2) => 
       (ex(S11 : SentenceSet) 
 subSentenceSet(S11, S1) & 
  implies(conjunction(S11), s2))))) 
 
op closure : RuleSet * SentenceSet -> SentenceSet 
 
axiom closure_is_implied is 
 fa(R : RuleSet, S : SentenceSet) 
  impliesSet(S, closure(R, S)) 
 
axiom closure_is_closed is 
 fa(R : RuleSet, S : SentenceSet) 
  apply_RS(R, closure(R, S)) = closure(R, S)      
 
axiom closure_is_smallest is 
 fa(R : RuleSet, S : SentenceSet, S1 : SentenceSet) 
  (impliesSet(S, S1) & 
   apply_RS(R, S1) = S1) => 
   subSentenceSet(closure(R, S), S1) 
   
op prover : RuleSet * SentenceSet ->  Option Boolean  
  
op true_sentence : Sentence 
op false_sentence : Sentence 
op RuleSet0 : RuleSet 
 
axiom completeness_of_prover is 
 fa (S : SentenceSet) 
  (implies(conjunction(S), false_sentence) => 
  restrict   (prover(RuleSet0, S)) ) 
 
axiom soundness_of_prover is 
 fa(S : SentenceSet) 
  (some(prover(RuleSet0, S)) => 
   implies(conjunction(S), false_sentence)) 
endspec 
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Appendix 2: Declarative Resolution Theorem Prover 
 
Here is the declarative specification of a propositional resolution theorem prover.  
Although developed manually, it will ultimately be developed as a refinement of the 
previous specification. 
 
theorem_prover_spec = spec 
 
sort Sentence 
  
op true_sentence : Sentence 
op false_sentence : Sentence 
op neg : Sentence -> Sentence 
 
sort SentenceSet = {s : Sentence | true} 
 
%op rule? :  SentenceSet * Sentence -> Boolean 
 
sort Rule = SentenceSet * Sentence -> Boolean 
 
sort RuleSet = {r : Rule | true} 
 
op apply_rS : Rule * SentenceSet * Sentence -> Boolean 
 
op refute : SentenceSet * RuleSet -> Boolean 
 
op add_S : Sentence * SentenceSet -> SentenceSet 
 
axiom add_S_collapses is 
 fa(s : Sentence, S : SentenceSet)  
  add_S(s, add_S(s, S)) = add_S(s, S) 
 
op empty_S : SentenceSet 
 
op single_S : Sentence -> SentenceSet 
 
op duo_S : Sentence * Sentence -> SentenceSet 
 
axiom definition_of_single_S is 
 fa(s : Sentence) 
  single_S(s) = add_S(s, empty_S) 
 
axiom definition_of_duo_S is 
 fa(s1 : Sentence, s2 : Sentence) 
  duo_S(s1, s2) = add_S(s1, single_S(s2)) 
 
op add_R : Rule * RuleSet -> RuleSet 
 
axiom add_R_collapses is 
 fa(s : Rule, S : RuleSet)  
  add_R(s, add_R(s, S)) = add_R(s, S) 
 
op empty_R : RuleSet 
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op single_R : Rule -> RuleSet 
 
op duo_R : Rule * Rule -> RuleSet 
 
axiom definition_of_single_R is 
 fa(s : Rule) 
  single_R(s) = add_R(s, empty_R) 
 
axiom definition_of_duo_R is 
 fa(s1 : Rule, s2 : Rule) 
  duo_R(s1, s2) = add_R(s1, single_R(s2)) 
 
axiom add_R_collapses is 
 fa(r : Rule, R : RuleSet)  
  add_R(r, add_R(r, R)) = add_R(r, R) 
 
axiom false_is_refuted is 
 fa(S : SentenceSet, R : RuleSet) 
  refute(add_S(false_sentence, S), R) 
 
axiom apply_rule_to_refute is 
 fa (S : SentenceSet, s : Sentence, R : RuleSet, r : Rule) 
  apply_rS(r, S, s) &  
  refute(add_S(s, S), add_R(r, R)) => 
  refute(S, add_R(r, R))  
 
op binaryResolution : Rule 
 
op Clause? : Sentence -> Boolean 
 
sort Clause  = {s : Sentence | Clause? s} 
 
op Literal? : Clause -> Boolean 
 
sort Literal = {c : Clause | Literal? c} 
 
op disjunction : SentenceSet -> Sentence 
 
axiom disjunction_of_true is 
 fa (S : SentenceSet) 
  disjunction(add_S(true_sentence, S)) = true_sentence 
 
axiom disjunction_of_false is 
 fa(S : SentenceSet) 
  disjunction(add_S(false_sentence, S)) = disjunction(S) 
 
conjecture disjunction_of_single_lemma is 
 fa(s : Sentence) 
  disjunction(single_S(s)) = s 
 
conjecture disjunction_of_duo_false_lemma is 
 fa(s : Sentence) 
  disjunction(duo_S(s, false_sentence)) = s 
 
axiom definition_of_binaryResolution is 
 fa(P : Literal, C : Clause, D : Clause) 
  apply_rS(binaryResolution, 
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    duo_S(disjunction(duo_S(neg(P), C)),    
   disjunction(duo_S(P, D))), 
    disjunction(duo_S(C, D))) 
 
conjecture binaryResolution_test is 
  fa(P : Literal) 
   apply_rS(binaryResolution, duo_S(neg(P), P), false_sentence) 
 
conjecture applyBinaryResolution_test is 
  fa(P : Literal) 
   apply_rS(binaryResolution, duo_S(neg(P), P), false_sentence) 
 
conjecture refutation_test is 
  fa(P : Literal) 
   refute(duo_S(neg(P), P 
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Appendix 3: Procedural Resolution Theorem Prover 
 
Here is the procedural version of the propositional resolution theorem prover—ultimately 
it will be developed as a refinement of the declarative version. 
 
 
Closure = spec 
import /Library/Structures/Data/Sets/Polymorphic 
op subset?: [a] Set a -> Set a -> Boolean 
op  closure: [a] (Set a -> Set a) -> Set a -> Set a 
%% Should have subsort predicate that subset? s (f s) 
def closure f s = 
  let newS = f s in 
  if subset? newS s then s 
    else closure f newS 
 
%% Incremental version  
op  closure1: [a] (Set a -> Set a) -> Set a -> Set a 
def closure1 f s = 
  closure (fn s -> union s (f s)) s 
 
endspec 
 
 
WTP = spec 
import Closure 
import /Library/Structures/Data/Sets/Polymorphic/AsLists 
 
sort Sentence = | True 
                | False 
                | Var String 
                | Neg Sentence 
                | Conjunction SentenceSet 
                | Disjunction SentenceSet 
 
sort SentenceSet = Set Sentence 
 
op  Clause? : Sentence -> Boolean 
def Clause? s = 
  case s of 
    | Disjunction _ -> true 
    | True -> true 
    | False -> true 
    | _ -> false 
 
sort Clause  = {s : Sentence | Clause? s} 
sort ClauseSet = Set Clause 
 
op  Literal? : Clause -> Boolean 
def Literal? s = 
  case s of 
    | True -> true 
    | False -> true 
    | Var _ -> true 
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    | _ -> false 
 
sort Literal = {c : Clause | Literal? c} 
 
op  makeConjunction: SentenceSet -> Sentence 
def makeConjunction ss = 
  if empty? ss 
    then True 
  else if member? ss False 
        then False 
 else Conjunction(delete ss True) 
 
op  makeDisjunction: SentenceSet -> Sentence 
def makeDisjunction ss = 
  let ss = simplifyDisSS ss in 
  if empty? ss 
    then False 
  else if member? ss True 
        then True 
 else Disjunction ss 
 
sort Rule = Clause * Clause -> ClauseSet 
 
sort RuleSet = Set Rule 
 
op  binaryResolution : Rule 
def binaryResolution(c1,c2) = 
  case (c1,c2) of 
    | (Disjunction s1,Disjunction s2) -> 
      union (binaryResolution1 s1 s2)  (binaryResolution1 s2 s1) 
    | _ -> empty 
 
op  binaryResolution1: SentenceSet -> SentenceSet -> ClauseSet 
def binaryResolution1 s1 s2 = 
  fold (fn r -> fn e1 -> 
        fold (fn r -> fn e2 -> 
       case e2 of 
        | Neg ne2 -> 
   if e1 = ne2 
     then insert r (makeDisjunction(union (delete s1 e1) 
(delete s2 e2))) 
     else r 
        | _ -> r) 
          r s2) 
    empty s1 
 
op  simplifyDisSS: SentenceSet -> SentenceSet 
def simplifyDisSS ss = 
  fold (fn rss -> fn s -> 
 let s = simplifyS s in 
 case s of 
   | False -> rss 
   | Neg ns -> 
     if member? rss ns 
       then singleton(True) 
       else insert rss s 
   | _ -> 
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     let ns = Neg s in 
     if member? rss ns 
       then singleton(True) 
       else insert rss s) 
  empty ss 
 
op  simplifyS: Sentence -> Sentence 
def simplifyS s = 
  case s of 
    | Neg ns -> 
      (case simplifyS ns of 
 | Neg nns -> nns 
 | ns1 -> Neg ns1) 
    | Conjunction ss -> makeConjunction(ss) 
    | Disjunction ss -> makeDisjunction(simplifyDisSS ss) 
    | _ -> s 
 
op  applyRuleSet: RuleSet -> ClauseSet -> ClauseSet 
def applyRuleSet rs cs = 
  fold (fn ncs -> fn rl -> 
        fold (fn ncs -> fn cl1 -> 
       fold (fn ncs -> fn cl2 -> 
      union ncs (rl(cl1,cl2))) 
         ncs cs) 
   ncs cs) 
    cs rs 
 
op  refute : ClauseSet * RuleSet -> Boolean 
def refute(cs,rs) = 
  member? (closure1 (applyRuleSet rs) cs) False 
 
endspec 
 
Examples = spec 
 
import WTP 
 
op  listToSet: [a] List a -> Set a 
def listToSet l = 
  foldl (fn (e,s) -> insert s e) empty l 
 
def binaryResolution_test = 
  let P = Var "p" in 
  binaryResolution(makeDisjunction(singleton(Neg(P))), 
makeDisjunction(singleton P)) = singleton(False) 
 
def binaryResolution_test2 = 
  let Q = Var "q" in 
  let R = Var "r" in 
  let S = Var "s" in 
  binaryResolution(makeDisjunction(listToSet[Neg S,Neg R]), 
     makeDisjunction(listToSet[S,Q,R]))  
 
def refute_test1 = 
  let P = Var "p" in 
  refute(listToSet 
[makeDisjunction(singleton(Neg(P))),makeDisjunction(singleton P)], 
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  singleton(binaryResolution)) 
 
def refute_test2 = 
  let P = Var "p" in 
  let Q = Var "q" in 
  let R = Var "r" in 
  refute(listToSet[makeDisjunction(listToSet[Neg P,Q]), 
     makeDisjunction(listToSet[Neg P,R]), 
     makeDisjunction(singleton P), 
     makeDisjunction(listToSet[Neg Q,Neg R])], 
  singleton(binaryResolution)) 
 
def refute_test3 = 
  let P = Var "p" in 
  let Q = Var "q" in 
  let R = Var "r" in 
  refute(listToSet[makeDisjunction(listToSet[Neg P,Q]), 
     makeDisjunction(listToSet[Neg P,R]), 
     makeDisjunction(singleton P), 
     makeDisjunction(listToSet[Neg Q,R])], 
  singleton(binaryResolution)) 
 
def refute_test4 = 
  let P = Var "p" in 
  let Q = Var "q" in 
  let R = Var "r" in 
  let S = Var "s" in 
  refute(listToSet[makeDisjunction(listToSet[Neg P,Neg R]), 
     makeDisjunction(listToSet[Neg Q,Neg R]), 
     makeDisjunction(singleton (P)), 
     makeDisjunction(listToSet[Neg S,R]), 
     makeDisjunction(listToSet[S,Q,R]), 
     makeDisjunction(singleton(Neg Q))], 
  singleton(binaryResolution)) 
 
 
 
endspec), add_R(binaryResolution, empty_R)) 
 
endspec 
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Appendix 4: Declarative Specification of a Simple 
Meeting-Scheduling Problem 
 
Our first experiments had to do with the impact of ordering advice on the performance of 
the theorem prover.   Our first problem simply tested the ability of the theorem prover to 
solve scheduling problems without the benefit of special advice. 
 
meeting_spec = spec 
 
(* comment: 
Art, Bob and Carol are free at all three available times 
except for TimeA, TimeB, and TimeC, respectively.  Each 
pair of them needs to have a meeting. 
   end comment *) 
 
 
  sort Time 
 
  op Art : Time -> Boolean 
  op Bob : Time -> Boolean 
  op Carol : Time -> Boolean 
 
  op TimeA : Time 
  op TimeB : Time 
  op TimeC : Time 
 
  axiom Art_Free_Time is 
   Art(TimeB) & Art(TimeC) 
 
  axiom Bob_Free_Time is 
   Bob(TimeA) & Bob(TimeC) 
 
  axiom Carol_Free_Time is 
   Carol(TimeA) & Carol(TimeB)  
   
  conjecture meetinga is 
   ex(time : Time) 
    Bob(time) & Carol(time) 
   
  conjecture meetingb is 
   ex(time : Time) 
    Art(time) & Carol(time) 
   
  conjecture meetingc is 
   ex(time : Time) 
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    Art(time) & Bob(time) 
 
endspec 
 
There are three people, Art, Bob, and Carol, who are busy at Time A, Time B, and Time 
C, respectively.  We pose three independent scheduling problems in which each pair of 
them is to meet.  These are simple problems, which the theorem prover was able to solve 
almost instantaneously (about .2 or .3 seconds, of which most of the time was spent 
processing assertions added by the interface for numerical reasoning which were 
extraneous to this problem). 
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Appendix 5: Procedural Meeting-Scheduling Theory 
 
Ideally, this meeting scheduler would be obtained by specializing a procedural 
specification of a theorem prover to a declarative theory of meeting scheduling.  Steps 
towards a declarative meeting-scheduling theory are outlined later in this section. 
 
 
procedural_schedule = spec 
 
 
 sort Person 
 sort Time 
 
 sort Appointment = Person * Time  
 
 op noAppointment : Appointment 
 
 sort Schedule = {a : Appointment} 
 
 op noSchedule : Schedule 
 
 op addAppointment : Person * Time * Schedule -> Schedule 
 op removeAppointment : Person * Time * Schedule -> 
Schedule 
 
 sort Group = {p : Person} 
 
 op emptyGroup? : Group -> Boolean 
  
 op arbGroup : Group -> Person 
 
 op restGroup : Group -> Group 
 
 sort Org = {g : Group} 
 
 op emptyOrg? : Org -> Boolean 
 
 op arbOrg : Org -> Group 
 
 op restOrg : Org -> Org 
 
(* comment: 
scheduleOrg schedules meetings for a class of groups so 
that all persons in each group will have a meeting 
together, with no others.  It accepts two parameters: a 
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schedule of already agreed-on meetings,  and a schedule of 
people's free times. 
   end-comment *) 
 
 op scheduleOrg : Org * Schedule * Schedule -> Schedule 
 op scheduleOneGroup : Group * Org * Schedule * Schedule -> 
Schedule 
 
(* comment: 
if the organization, i.e., the class of groups is empty, 
the meetin problem is already solved.  Othewise. we select 
one group arbitrarily to schedule a meeting for. 
   end-comment *) 
 
 def scheduleOrg(C : Org,  
   oldSchedule : Schedule,  
   freeSchedule : Schedule): Schedule = 
     if emptyOrg?(C) 
     then oldSchedule 
     else scheduleOneGroup(arbOrg(C),restOrg(C), 
oldSchedule, freeSchedule) 
 
       op scheduleOnePerson :  
       Person * Group * Org * Schedule * Schedule -> 
       Schedule 
 
(* comment: 
To schedule meetings for a group, select an arbitrary 
person from the group; schedule a meeting for that person; 
then schedule meetings for the others. 
   end comment *) 
 
 def scheduleOneGroup (group1 : Group,  
         otherGroups : Org, 
         oldSchedule : Schedule, 
         freeSchedule : Schedule): Schedule = 
     if emptyGroup?(group1) 
     then scheduleOrg(otherGroups, oldSchedule, 
freeSchedule) 
     else scheduleOnePerson(arbGroup(group1),  
       restGroup(group1),  
       otherGroups,  
       oldSchedule,  
       freeSchedule) 
 
(* comment: 
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getAppointment finds an arbitrary appointment (or free 
time) in a person's schedule, if any 
   end comment *) 
  
 op getAppointment : Person * Schedule -> Appointment 
 
(* comment: 
removeAppointment removes that appointment from the 
schedule, if one was found; otherwise, it leaves the 
schedule unchanged.   
 
inSchedule checks to see if a person has an appointment (or 
free time) at a given time. 
end comment *)  
 
 op inSchedule : Person * Time * Schedule -> Boolean 
 
% time yields the time of a given appointment    
 
 op time : Appointment -> Time 
 
(* comment 
scheduleOnePerson schedules a meeting for a single person.  
It finds a free time for that person; if none exists, it 
fails.  It then attempts to schedule the rest of the group 
to meet at that time. 
 
If that fails, it attempts to reschedule a meeting for the 
given person at some time other than the selected free 
time. For this purpose,it removes that time from the 
person's free time schedule. 
   end comment *) 
 
 def scheduleOnePerson 
  (person1 : Person, 
   restofGroup : Group, 
   otherGroups : Org, 
   oldSchedule : Schedule, 
   freeSchedule : Schedule) : Schedule = 
   let appointment = getAppointment(person1, freeSchedule) 
in 
    if ~(appointment = noAppointment) 
    then let time1 = time(appointment) in 
         let newFreeSchedule =  
      removeAppointment(person1, time1, freeSchedule) 
in 
         let newSchedule = scheduleGroupTime( 



 

 

 

26

       time1, 
       restofGroup, 
       otherGroups, 
       addAppointment(person1, time1, oldSchedule), 
       newFreeSchedule) in 
  if ~(newSchedule = noSchedule) 
  then scheduleOrg(otherGroups, newSchedule, 
newFreeSchedule) 
         else scheduleOnePerson 
               (person1, 
                restofGroup, 
                otherGroups, 
  oldSchedule, 
         newFreeSchedule)       
     
    else noSchedule  
 
 op scheduleGroupTime :  
       Time * Group * Org * Schedule * Schedule -> Schedule 
 
(* comment: 
scheduleGroupTime attempts to find a schedule in which an 
entire group will meet at a given time.  If the group is 
empty, it goes on to schedule the other groups.  Otherwise, 
it selects an arbitrary person from that group, and checks 
to see if that person is free at the given time.  If not, 
it fails.  Otherwise, it continues by scheduling the rest 
of the group at the given time. 
   end comment *) 
 
 def scheduleGroupTime(time1 : Time, 
                        group1 : Group, 
                        otherGroups : Org, 
                        oldSchedule : Schedule, 
          freeSchedule : Schedule) : Schedule = 
 
 if emptyGroup?(group1) 
 then scheduleOrg(otherGroups, oldSchedule, freeSchedule) 
 else let person1 = arbGroup(group1) in 
      if inSchedule(person1, time1, freeSchedule) 
      then scheduleGroupTime 
 (time1, 
  restGroup(group1), 
  otherGroups, 
  addAppointment(person1, time1, oldSchedule), 
  removeAppointment(person1, time1, freeSchedule)) 
      else noSchedule 
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endspec 
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Appendix 6: Two-Meeting Scheduling Problem 
 
In the next problem we tried to introduce an asymmetry by having one of the participants, 
Bob, have more free time than the other two.   We pose a single problem in which two 
distinct meetings are to be scheduled, between Bob and his two colleagues. 
 
 
 
two_meeting_spec = spec 
 
(* comment:  
Art is free only at TimeA; Carol is free only at TimeB; Bob 
is free both times.  They need to have two meetings, one 
between Art and Bob, the other between Bob and Carol. 
   end comment *) 
 
  sort Time 
 
  op Art : Time -> Boolean 
  op Bob : Time -> Boolean 
  op Carol : Time -> Boolean 
 
  op TimeA : Time 
  op TimeB : Time 
 
  axiom Times_Distinct is 
  ~(TimeA = TimeB) 
 
  axiom Art_Free_Time is 
   Art(TimeA) 
 
  axiom Bob_Free_Time is 
   Bob(TimeA) & Bob(TimeB)  
 
  axiom Carol_Free_Time is 
   Carol(TimeB) 
  
   
  conjecture two_meetings is 
   ex(time1 : Time, time2 : Time) 
    Art(time1) & Bob(time1) & Bob(time2) & Carol(time2) & 
~(time1 = time2) 
 
 
endspec 
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Again this problem was too simple to pose much difficulty to the theorem prover; it was 
solved almost instantaneously. 
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Appendix 7: Scheduling with Space  
 
We next introduced the element of scheduling space as well as time.  We assume there 
are two rooms, one of which is free only in the morning, the other in the afternoon.  The 
scheduler is to find both times and rooms for two meetings. 
 
 
meeting_room_spec = spec 
 
(* comment: 
Art is free only in the morning; Carol is free only in the 
afternoon; Bob is free both times. There are two meeting 
rooms.  The light room is free only in the morning; the 
dark room is free only in the afternoon.  We need to 
schedule two meetings, one for Art and Bob and another for 
Bob and Carol.  The schedule is to provide room 
assignments. 
   end comment *) 
 
  sort Person 
  sort Room 
  sort Time 
 
  op Art : Person 
  op Bob : Person 
  op Carol : Person 
 
  op DarkRoom : Room 
  op LightRoom : Room 
 
  op Morning : Time 
  op Afternoon : Time 
 
  op FreePerson : Person * Time -> Boolean 
  op FreeRoom : Room * Time -> Boolean 
 
  axiom Times_Distinct is 
  ~(Morning = Afternoon) 
 
  axiom Rooms_Distinct is 
  ~(DarkRoom = LightRoom) 
 
  axiom Art_Free_Time is 
   FreePerson(Art, Morning) 
 
  axiom Bob_Free_Time is 
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   FreePerson(Bob, Morning) & FreePerson(Bob, Afternoon)  
 
  axiom Carol_Free_Time is 
    
 
  axiom LightRoom_Free_Time is 
   FreeRoom(LightRoom, Morning) 
 
  axiom DarkRoom_Free_Time is 
   FreeRoom(DarkRoom, Afternoon) 
  
   
  conjecture two_meeting_rooms is 
   ex(time1 : Time, time2 : Time, room1 : Room, room2 : 
Room,  
      schedule : Time * Room * Time * Room) 
    FreePerson(Art, time1) & FreePerson(Bob, time1) &  
    FreeRoom(room1, time1) & 
    FreePerson(Bob, time2) & FreePerson(Carol, time2) & 
    FreeRoom(room2, time2) & 
    ~(time1 = time2) &  
    schedule = (time1, room1, time2, room2) 
endspec 
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Appendix 8: Advice about Constraint Ordering 
 
All the above problems were so simple that they were not useful in experimenting with 
the effects of advice.  In our next problem we attempted to require a meeting to be 
scheduled for many participants and rooms. 
 
 
ordered_hard_meeting_room_spec = spec 
 
(* comment:  
There are nine people, eight times, and eleven rooms.  All 
people and rooms are available at all times, except Bob and 
the dark room are available only at 5.  It is necessary to 
schedule a time and room for a single meeting with 
everybody.  It was hypothesized that an ordering that 
scheduled Bob and the dark room first would dominate other 
strategies. 
  end comment *) 
 
  sort Person 
  sort Room 
  sort Time 
 
  op Art : Person 
  op Bob : Person 
  op Carol : Person 
  op Don : Person 
  op Ed : Person 
  op Frank : Person 
  op George : Person 
  op Harry : Person 
  op Ivy : Person 
 
 
  op DarkRoom : Room 
  op LightRoom : Room 
  op RedRoom : Room 
  op OrangeRoom : Room 
  op YellowRoom : Room 
  op GreenRoom : Room 
  op BlueRoom : Room 
  op IndigoRoom : Room 
  op VioletRoom : Room 
  op BlackRoom : Room 
  op WhiteRoom : Room 
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  op Time1 : Time 
  op Time2 : Time 
  op Time3 : Time 
  op Time4 : Time 
  op Time5 : Time 
  op Time6 : Time 
  op Time7 : Time 
  op Time8 : Time 
 
  op FreePerson : Person * Time -> Boolean 
  op FreeRoom : Room * Time -> Boolean 
 
  axiom Art_Free_Time is 
    FreePerson(Art, Time1) &  
    FreePerson(Art, Time2) &  
    FreePerson(Art, Time3) & 
    FreePerson(Art, Time4) &  
    FreePerson(Art, Time5) &  
    FreePerson(Art, Time6) &  
    FreePerson(Art, Time7) &  
    FreePerson(Art, Time8) 
 
  axiom Bob_Free_Time is 
   FreePerson(Bob, Time5) 
 
  axiom Carol_Free_Time is 
    FreePerson(Carol, Time1) &  
    FreePerson(Carol, Time2) &  
    FreePerson(Carol, Time3) & 
    FreePerson(Carol, Time4) &  
    FreePerson(Carol, Time5) &  
    FreePerson(Carol, Time6) &  
    FreePerson(Carol, Time7) &  
    FreePerson(Carol, Time8) 
 
  axiom Don_Free_Time is 
    FreePerson(Don, Time1) &  
    FreePerson(Don, Time2) &  
    FreePerson(Don, Time3) & 
    FreePerson(Don, Time4) &  
    FreePerson(Don, Time5) &  
    FreePerson(Don, Time6) &  
    FreePerson(Don, Time7) &  
    FreePerson(Don, Time8)  
 
 
  axiom Ed_Free_Time is 
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    FreePerson(Ed, Time1) &  
    FreePerson(Ed, Time2) &  
    FreePerson(Ed, Time3) & 
    FreePerson(Ed, Time4) &  
    FreePerson(Ed, Time5) &  
    FreePerson(Ed, Time6) &  
    FreePerson(Ed, Time7) &  
    FreePerson(Ed, Time8)  
 
 
  axiom Frank_Free_Time is 
    FreePerson(Frank, Time1) &  
    FreePerson(Frank, Time2) &  
    FreePerson(Frank, Time3) & 
    FreePerson(Frank, Time4) &  
    FreePerson(Frank, Time5) &  
    FreePerson(Frank, Time6) &  
    FreePerson(Frank, Time7) &  
    FreePerson(Frank, Time8)   
 
 
  axiom George_Free_Time is 
    FreePerson(George, Time1) &  
    FreePerson(George, Time2) &  
    FreePerson(George, Time3) & 
    FreePerson(George, Time4) &  
    FreePerson(George, Time5) &  
    FreePerson(George, Time6) &  
    FreePerson(George, Time7) &  
    FreePerson(George, Time8)   
 
 
  axiom Harry_Free_Time is 
    FreePerson(Harry, Time1) &  
    FreePerson(Harry, Time2) &  
    FreePerson(Harry, Time3) & 
    FreePerson(Harry, Time4) &  
    FreePerson(Harry, Time5) &  
    FreePerson(Harry, Time6) &  
    FreePerson(Harry, Time7) &  
    FreePerson(Harry, Time8)   
 
  axiom Ivy_Free_Time is 
    FreePerson(Ivy, Time1) &  
    FreePerson(Ivy, Time2) &  
    FreePerson(Ivy, Time3) & 
    FreePerson(Ivy, Time4) &  
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    FreePerson(Ivy, Time5) &  
    FreePerson(Ivy, Time6) &  
    FreePerson(Ivy, Time7) &  
    FreePerson(Ivy, Time8)   
 
  axiom LightRoom_Free_Time is 
   FreeRoom(LightRoom, Time1) & 
   FreeRoom(LightRoom, Time2) & 
   FreeRoom(LightRoom, Time3) & 
   FreeRoom(LightRoom, Time4) & 
%   FreeRoom(LightRoom, Time5) & 
   FreeRoom(LightRoom, Time6) & 
   FreeRoom(LightRoom, Time7) & 
   FreeRoom(LightRoom, Time8) 
 
  axiom DarkRoom_Free_Time is 
%   FreeRoom(DarkRoom, Time1) & 
%   FreeRoom(DarkRoom, Time2) & 
%   FreeRoom(DarkRoom, Time3) & 
%   FreeRoom(DarkRoom, Time4) & 
   FreeRoom(DarkRoom, Time5)% & 
%   FreeRoom(DarkRoom, Time6) & 
%   FreeRoom(DarkRoom, Time7) & 
%   FreeRoom(DarkRoom, Time8) 
 
 
  axiom RedRoom_Free_Time is 
   FreeRoom(RedRoom, Time1) & 
   FreeRoom(RedRoom, Time2) & 
   FreeRoom(RedRoom, Time3) & 
   FreeRoom(RedRoom, Time4) & 
%   FreeRoom(RedRoom, Time5) & 
   FreeRoom(RedRoom, Time6) & 
   FreeRoom(RedRoom, Time7) & 
   FreeRoom(RedRoom, Time8) 
 
 
  axiom OrangeRoom_Free_Time is 
   FreeRoom(OrangeRoom, Time1) & 
   FreeRoom(OrangeRoom, Time2) & 
   FreeRoom(OrangeRoom, Time3) & 
   FreeRoom(OrangeRoom, Time4) & 
%   FreeRoom(OrangeRoom, Time5) & 
   FreeRoom(OrangeRoom, Time6) & 
   FreeRoom(OrangeRoom, Time7) & 
   FreeRoom(OrangeRoom, Time8)  
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  axiom YellowRoom_Free_Time is 
   FreeRoom(YellowRoom, Time1) & 
   FreeRoom(YellowRoom, Time2) & 
   FreeRoom(YellowRoom, Time3) & 
   FreeRoom(YellowRoom, Time4) & 
%   FreeRoom(YellowRoom, Time5) & 
   FreeRoom(YellowRoom, Time6) & 
   FreeRoom(YellowRoom, Time7) & 
   FreeRoom(YellowRoom, Time8)  
 
  axiom GreenRoom_Free_Time is 
   FreeRoom(GreenRoom, Time1) & 
   FreeRoom(GreenRoom, Time2) & 
   FreeRoom(GreenRoom, Time3) & 
   FreeRoom(GreenRoom, Time4) & 
%   FreeRoom(GreenRoom, Time5) & 
   FreeRoom(GreenRoom, Time6) & 
   FreeRoom(GreenRoom, Time7) & 
   FreeRoom(GreenRoom, Time8)  
 
  axiom BlueRoom_Free_Time is 
   FreeRoom(BlueRoom, Time1) & 
   FreeRoom(BlueRoom, Time2) & 
   FreeRoom(BlueRoom, Time3) & 
   FreeRoom(BlueRoom, Time4) & 
%   FreeRoom(BlueRoom, Time5) & 
   FreeRoom(BlueRoom, Time6) & 
   FreeRoom(BlueRoom, Time7) & 
   FreeRoom(BlueRoom, Time8) 
 
  axiom IndigoRoom_Free_Time is 
   FreeRoom(IndigoRoom, Time1) & 
   FreeRoom(IndigoRoom, Time2) & 
   FreeRoom(IndigoRoom, Time3) & 
   FreeRoom(IndigoRoom, Time4) & 
%   FreeRoom(IndigoRoom, Time5) & 
   FreeRoom(IndigoRoom, Time6) & 
   FreeRoom(IndigoRoom, Time7) & 
   FreeRoom(IndigoRoom, Time8) 
 
  axiom VioletRoom_Free_Time is 
   FreeRoom(VioletRoom, Time1) & 
   FreeRoom(VioletRoom, Time2) & 
   FreeRoom(VioletRoom, Time3) & 
   FreeRoom(VioletRoom, Time4) & 
%   FreeRoom(VioletRoom, Time5) & 
   FreeRoom(VioletRoom, Time6) & 
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   FreeRoom(VioletRoom, Time7) & 
   FreeRoom(VioletRoom, Time8) 
   
  conjecture ordered_hard_meeting_room is 
   ex(time : Time, room : Room,  
      schedule : Time * Room) 
    FreePerson(Art, time) &  
    FreePerson(Bob, time) &  
    FreePerson(Carol, time) &  
    FreePerson(Don, time) &  
    FreePerson(Ed, time) &  
    FreePerson(Frank, time) &  
    FreePerson(George, time) &  
    FreePerson(Harry, time) &  
    FreePerson(Ivy, time) &  
    FreeRoom(room, time) & 
    schedule = (time, room) 
 
 
  def meeting_prove_options =  
 " 
 (use-resolution t)  
 (use-hyperresolution nil) 
 (use-negative-hyperresolution nil)  
 (use-paramodulation) 
 (use-factoring)  
 (use-literal-ordering-with-hyperresolution 'literal-
ordering-p) 
 (use-literal-ordering-with-negative-hyperresolution 
'literal-ordering-p) 
 (use-literal-ordering-with-resolution 'literal-ordering-a) 
 (use-literal-ordering-with-paramodulation 'literal-
ordering-p)  
 (use-ac-connectives)  
 (run-time-limit 10) 
 (assert-supported nil)  
 (use-code-for-numbers nil) 
 (print-symbol-ordering)  
 (print-final-rows)  
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Art|) 
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Carol|) 
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Don|) 
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Ed|) 
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Frank|) 
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|George|) 
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Harry|) 
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Ivy|) 
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 (declare-ordering-greaterp 'snark::|DarkRoom| 
'snark::|LightRoom|) 
 (declare-ordering-greaterp 'snark::|DarkRoom| 
'snark::|RedRoom|) 
 (declare-ordering-greaterp 'snark::|DarkRoom| 
'snark::|OrangeRoom|) 
 (declare-ordering-greaterp 'snark::|DarkRoom| 
'snark::|YellowRoom|) 
 (declare-ordering-greaterp 'snark::|DarkRoom| 
'snark::|GreenRoom|) 
 (declare-ordering-greaterp 'snark::|DarkRoom| 
'snark::|BlueRoom|) 
 (declare-ordering-greaterp 'snark::|DarkRoom| 
'snark::|IndigoRoom|) 
 (declare-ordering-greaterp 'snark::|DarkRoom| 
'snark::|VioletRoom|) 
 "     
 
 
endspec 
 
 
Note that for this problem Bob is the busiest person—he is free only at Time 5—and the 
dark room is the busiest room—it is also free only at 5.  The other people are available at 
all times and the other rooms are available at all times other than Time 5. 
 
Our expectation was that if we gave the theorem prover advice to schedule the most 
constrained resources—Bob and the dark room—first, it would exhibit better 
performance.  We did separate runs in which the advice was absent or perversely bad—
we actually told it to schedule the most constrained resources last instead of first: 
 
 
 (declare-ordering-greaterp 'snark::|Art|  'snark::|Bob|) 
 (declare-ordering-greaterp 'snark::|Carol| 'snark::|Bob|) 
 (declare-ordering-greaterp 'snark::|Don| 'snark::|Bob|) 
 (declare-ordering-greaterp 'snark::|Ed| 'snark::|Bob|) 
 (declare-ordering-greaterp 'snark::|Frank| 'snark::|Bob|) 
 (declare-ordering-greaterp 'snark::|George| 'snark::|Bob|) 
 (declare-ordering-greaterp 'snark::|Harry| 'snark::|Bob|) 
 (declare-ordering-greaterp 'snark::|Ivy| 'snark::|Bob|) 
 (declare-ordering-greaterp 'snark::|LightRoom| 
'snark::|DarkRoom|) 
 (declare-ordering-greaterp 'snark::|RedRoom| 
'snark::|DarkRoom|) 
 (declare-ordering-greaterp 'snark::|OrangeRoom| 
'snark::|DarkRoom|) 
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 (declare-ordering-greaterp 'snark::|YellowRoom| 
'snark::|DarkRoom|) 
 (declare-ordering-greaterp 'snark::|GreenRoom| 
'snark::|DarkRoom|) 
 (declare-ordering-greaterp 'snark::|BlueRoom| 
'snark::|DarkRoom|) 
 (declare-ordering-greaterp 'snark::|IndigoRoom| 
'snark::|DarkRoom|) 
 (declare-ordering-greaterp 'snark::|VioletRoom| 
'snark::|DarkRoom|) 
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Appendix 9: Preference Advice 
 
 
Up to now, the advice we examined involved help in finding a solution.  But there is 
another kind of advice that involves expressing a preference for one solution over 
another.  This is different from a constraint, because we are assuming that either solution 
is acceptable; but if both are possible, one of them is preferable to the other.   
 
We experimented with one way of handling this sort of advice.  We first ignore the 
preference advice and find one solution to the problem.  We then seek another solution to 
the same problem, adding to the specification the condition that the new solution be 
better than the old.  Here “better” means preferable in the sense specified by the advice.   
If a better solution is found, we then seek a third solution, where the third solution is 
constrained to be better than the second, and so on until no more solutions exist or a time 
limit is exceed.  In this way, we continue to find better and better solutions until the 
search space or time limit is exhausted. 
 
preference_meeting_spec = spec 
 
 
  sort Person 
  sort Room 
  sort Time = Integer 
 
  op Alice : Person 
  op Bob : Person 
  op Carol : Person 
  op Don : Person 
  op Ellen : Person 
  op Frank : Person 
 
  op FreePerson : Person * Time -> Boolean 
 
  axiom Alice_Free_Time is 
    FreePerson(Alice, 1) &  
    FreePerson(Alice, 2) &  
    FreePerson(Alice, 3) &  
    FreePerson(Alice, 4) 
 
  axiom Bob_Free_Time is 
    FreePerson(Bob, 1) &  
    FreePerson(Bob, 2) &  
    FreePerson(Bob, 3) &  
    FreePerson(Bob, 4) 
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   axiom Carol_Free_Time is 
    FreePerson(Carol, 1) &  
    FreePerson(Carol, 2) &  
    FreePerson(Carol, 3) &  
    FreePerson(Carol, 4) 
 
  axiom Don_Free_Time is 
    FreePerson(Don, 1) &  
    FreePerson(Don, 2) &  
    FreePerson(Don, 3) &  
    FreePerson(Don, 4) 
 
  axiom Ellen_Free_Time is 
    FreePerson(Ellen, 1) &  
    FreePerson(Ellen, 2) &  
    FreePerson(Ellen, 3) &  
    FreePerson(Ellen, 4) 
 
  axiom Frank_Free_Time is 
    FreePerson(Frank, 1) &  
    FreePerson(Frank, 2) &  
    FreePerson(Frank, 3) &  
    FreePerson(Frank, 4) 
 
   
  conjecture preference_meeting is 
   ex(time1 : Time, time2 : Time, time3 : Time, time4 : 
Time,  
      rating : Nat,  
      schedule : Nat * Time * Time * Time * Time) 
    FreePerson(Alice, time1) & FreePerson(Bob, time1) &  
    FreePerson(Carol, time2) & FreePerson(Don, time2) &  
    FreePerson(Ellen, time3) & FreePerson(Frank, time3) & 
        
    FreePerson(Alice, time4) & FreePerson(Bob, time4) &  
    FreePerson(Carol, time4) & FreePerson(Don, time4) &  
    FreePerson(Ellen, time4) & FreePerson(Frank, time4) & 
    ~(time4 =  time1) & ~(time4 = time2) & ~(time4 =  
time3) &  
    rating = max(time1, max(time2, max(time3, time4))) & 
    schedule = (rating, time1, time2, time3, time4) 
endspec 
 
In this problem there are three afternoon meetings to be scheduled between Alice and 
Bob, Carol and Don, and Ellen and Frank, respectively, and a fourth meeting to be 
scheduled between all of them together.  Although the meetings could all be scheduled at 
different times, we specify a preference that we would like the meetings to be over as 
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early as possible.  While some schedules have the last meeting over at 4, with this advice 
the theorem prover finds several acceptable plans but ultimately zeroes in on one in 
which the three smaller meetings are all at the same time, 1, and the fourth meeting is 
scheduled immediately after, with an optimal finishing time of 2. 
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Appendix 10: Opportunistic Meeting Scheduling 
 
We have given advice about preferences with respect to time; we can also express 
preferences with respect to distance.  Also this is the first example in which we deal with 
concrete dates rather than abstract times.   This problem is expressed in the language of 
SNARK, which is more primitive than Specware’s language, because we are using 
SNARK temporal-reasoning features that are not yet made available through the 
Specware interface. 
 
 
(defun OPPORTUNISTIC-MEETING-PLAN () 
  (new-row-context) 
  (declare-constant 'alice :sort 'person) 
  (declare-constant 'bob :sort 'person) 
 
  (assert '(travel-from-to  
     alice 
     (feature populated-place San-Francisco  
       (feature 1st-order-division-countries 
California United-States)) 
     (feature populated-place Minneapolis  
       (feature 1st-order-division-countries 
Minnesota United-States)) 
     (date-interval 2005 3 31 12 :until 2005 3 31 16))) 
   
  (assert '(in  
     alice  
     (feature populated-place Minneapolis  
       (feature 1st-order-division-countries 
Minnesota United-States)) 
     (date-interval 2005 4 1 :until 2005 4 5)))  
 
  (assert '(travel-from-to  
     alice 
     (feature populated-place Minneapolis  
       (feature 1st-order-division-countries 
Minnesota United-States)) 
     (feature populated-place San-Francisco  
       (feature 1st-order-division-countries 
California United-States)) 
     (date-interval 2005 4 6 5 :until 2005 4 6 7))) 
 
  (assert '(travel-from-to  
     bob 
     (feature populated-place New-York  
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       (feature 1st-order-division-countries New-
York United-States)) 
     (feature populated-place Saint-Paul 
       (feature 1st-order-division-countries 
Minnesota United-States)) 
     (date-interval 2005 4 2 3 :until 2005 4 2 6))) 
 
  (assert '(in bob 
        (feature populated-place Saint-Paul (feature 
1st-order-division-countries Minnesota United-States)) 
        (date-interval 2005 4 3 :until 2005 4 7))) 
 
  (assert '(travel-from-to  
     bob 
     (feature populated-place Saint-Paul 
       (feature 1st-order-division-countries 
Minnesota United-States)) 
     (feature populated-place New-York  
       (feature 1st-order-division-countries New-
York United-States)) 
     (date-interval 2005 4 8 9 :until 2005 4 8 15))) 
 
  (prove ' 
    (could-meet-in-place alice bob (date-interval 2005 4 1 
:until 2005 4 10) ?region1 ?region2) 
     :answer '(Near ?region1 ?region2)) 
 
) 
 
In this problem, Alice and Bob need to meet during the first ten days of April, but Alice 
lives in San Francisco and Bob lives in New York.  We give as advice the preference to 
reduce travel distances.   They could schedule a meeting in New York, San Francisco, or 
someplace in between, which would mean a long trip for one or both of them.  However, 
examining the itineraries of Alice and Bob, the theorem prover sees that Alice has a trip 
to Minneapolis, Minnesota, on April 3–7, and Bob has a trip to Saint Paul, on April 5–9.  
Both these trips are within the desired time interval and their own time intervals overlap.  
Furthermore, using procedural attachments to a gazetteer and geographical computation 
software, the theorem prover is able to establish that Minneapolis and Saint Paul are only 
6 miles apart, a much shorter distance than 3000 miles.  Hence a meeting during the 
intersection of the time intervals, April 5–7, in either of the Twin Cities, will be 
preferable to a special trip.   
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Appendix 11: Learning in Meeting Scheduling 
 
We next looked at a certain kind of learning in the context of meeting scheduling.  We 
imagine an impossible meeting-scheduling problem, in which all the participants are so 
constrained that there is no possible solution: 
 
impossible_meeting_spec = spec 
 
(* comment: 
  
Here is an example of an unsolvable meeting problem: Art, 
Bob, and Carol are to have separate meetings between each 
pair of them, but they are only free at Time1 and Time2.  
The proof search generates a number of two-literal clauses, 
each of which presents a satisfactory schedule if only two 
of them were also free at Time3.  In other words, abduction 
could be used to suggest relaxations of contraints. 
end comment *) 
 
  sort Person 
  sort Room 
  sort Time 
 
  op Art : Person 
  op Bob : Person 
  op Carol : Person 
 
  op Time1 : Time 
  op Time2 : Time 
  op Time3 : Time 
 
  op FreePerson : Person * Time -> Boolean 
 
  axiom Times_Distinct is 
    ~(Time1 = Time2) & 
    ~(Time1 = Time3) & 
    ~(Time2 = Time3) 
 
  axiom Art_Free_Time is 
    FreePerson(Art, Time1) &  
    FreePerson(Art, Time2) 
    
  axiom Bob_Free_Time is 
   FreePerson(Bob, Time1) &  
   FreePerson(Bob, Time2) 
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  axiom Carol_Free_Time is 
    FreePerson(Carol, Time1) &  
    FreePerson(Carol, Time2) 
   
  conjecture impossible_meetings is 
   ex(time1 : Time, time2 : Time, time3 : Time, schedule : 
Time * Time * Time) 
    FreePerson(Art, time1) & FreePerson(Bob, time1) &  
    FreePerson(Bob, time2) & FreePerson(Carol, time2) & 
~(time2 = time1) & 
    FreePerson(Art, time3) & FreePerson(Carol, time3) & 
~(time3 =  time1) & ~(time3 = time2) &  
    schedule = (time1, time2, time3) 
 
endspec 
 
 
Here we need to schedule distinct meetings between Art and Bob, between Bob and 
Carol, and between Art and Carol, but all of them are free at only two times.  If we 
examine the failed proof, we find that all branches of the search space end in two-unit 
clauses, in which we hope to achieve that two of the participants are free at the third time, 
Time 3.  These clauses are the negated forms of 
 
   FreePerson(Art, Time3) & FreePerson(Bob, Time3), 
 
   FreePerson(Bob, Time3) & FreePerson(Carol, Time3),    
 
etc.  This suggests that if the constraints of the problem were relaxed so that two of the 
participants were free at Time 3, the problem would be solvable.  Detecting such 
conditions is carried out by the abduction facility of SNARK (or other theorem provers). 
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Appendix 12: Type-Inference Theory 
 
Many of the same techniques that we apply to meeting scheduling can also be applied to 
type inference, the coherent assignment of types to the symbols in an expression.  The 
purpose of looking at type checking is to ensure that the techniques we develop for 
meeting scheduling do indeed have more general applicability.  Also, Specware itself 
uses type inference so any improved implementations we obtain will be of immediate 
use. 
 
Here is a procedural version of a type inference system. 
 
 
AbstractSyntax = 
spec 
  type Expr = | Var String 
              | IntConst Integer 
              | RealConst(Integer * Nat) 
              | Tuple(Expr * Expr) 
              %| Tuple(List Expr) 
              | Apply(Expr * Expr) 
  type Type = | Integer 
              | Real 
              | Product(Type * Type) 
              %| Product(List Type) 
              | Arrow(Type * Type) 
endspec 
 
Typing = 
spec 
  import AbstractSyntax 
   
  op TypeOf: Expr -> Type 
 
  axiom typeOfIntConst is 
    fa(i:Integer) TypeOf(IntConst i) = Integer 
 
  axiom typeOfRealConst is 
    fa(i:Integer,n:Nat) TypeOf(RealConst (i,n)) = Real 
 
  axiom typeOfPlus is 
    TypeOf(Var "+") = 
Arrow(Product(Integer,Integer),Integer) 
   or TypeOf(Var "+") = Arrow(Product(Real,Real),Real) 
 
  axiom typeOfTuplePair is 
    fa(e1: Expr,e2:Expr) 
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TypeOf(Tuple(e1,e2)) = Product(TypeOf e1,TypeOf e2) 
 
  axiom typeOfApply is 
    fa(e:Expr,ed:Expr,dom:Type,rng:Type) 
    TypeOf e = Arrow(dom,rng) & TypeOf ed = dom 
      => TypeOf(Apply(e,ed)) = rng 
 
endspec 
 
TypingExamples = 
spec 
  import Typing 
   
  conjecture well_typed0 is 
  ex(t:Type) 
   TypeOf(IntConst 1) = t 
   
  conjecture well_typed1 is 
  ex(t:Type) 
   TypeOf(Tuple(IntConst 1,IntConst 2)) = t 
 
  conjecture well_typed2 is 
  ex(t:Type) 
   TypeOf(Apply(Var "+",Tuple(IntConst 1,IntConst 2))) = t 
 
  conjecture badly_typed1 is 
  ex(t:Type) 
   TypeOf(Apply(Var "+",Tuple(IntConst 1,RealConst(2,1)))) 
= t 
 
  conjecture badly_typed2 is 
  ex(t:Type) 
   TypeOf(Apply(Var "+",IntConst 1)) = t 
 
endspec 
 
Prove_well_typed0 = 
  prove well_typed0 in TypingExamples 
  answerVar t:Type 
 
Prove_well_typed1 = 
  prove well_typed1 in TypingExamples 
  %answerVar t:Type 
 
Prove_well_typed2 = 
  prove well_typed2 in TypingExamples 
  %answerVar t:Type 
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